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-We give-a new proof of V6ron's result concerning the classification of

isolated singularities for the equation -Ou + u# = 0. -Vs also establish that

the singular behavior at a point can be prescribed and determines uniquely the

solution (under fixed boundary conditions). ,/ ," h k A;)
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SIGNIFICANCE AND EXPLANATION

Nonlinear elliptic equations with isolated singularities occur in

physical problems with point sources. A good example is the Thomas-Fermi

3/2 .i
theory of atoms and molecules which leads to the equation -Au + u 0 in

3  U fail

The points fail correspond to the location of positive nuclei of

charge mi. Near ai the solution u has a singular behavior equivalent

to miE(x - ai) where E is the fundamental solution of -A, i.e. E(x)

S(4wlIxl) - . A striking result of L. V6ron provides a complete classifi-

cation of all singular solutions, and shows that isolated singularities of

nonlinear problems are quite rigid. In this paper we present a new proof of

V~ron's result based on a simple scaling argument. We also establish that the

singular behavior at a point can be prescribed very much like a boundary

condition and determines uniquely the solution.

. .. .'
A" ,esson For

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.
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SINGULAR SOLUTIONS FOR SORE S1ILINEAR ELLIPTIC BWUATIONS

Ha[ hesis and Luc Oswald

Dedicated to Jim surrin on his sixtieth birthday

1. Introduction

Lot DR - Ix e IN, ljx < R} with N ; 2. Consider a function u which satisfies

UCC( \{1o), U )o on S,\(O,

-Au + u P - 0 on SR\01 •

We are concerned with the behavior of u near x - 0. There are two distinct cases:

1) When p • N/(N-2) and (N ) 3) it has been shown by Brezis - VMron [91 that u must

be smooth at 0 (See also Baras-Pierre (1] for a different proof). In other words,

isolated singularities are removable.

2) When 1 < p < N/(N-2) there are solutions of (1) with a singularity 
at

x - 0. Noreover all singular solutions have been classified 
by V6ron 122]. We recall his

result:

Theorem I Assume 1 < p < N/(N-2) and u satisfies (1). Then one of the following

holds:

(i) either u is smooth at 0,

(ii) or lim u(x)/E(x) - c where c is a constant which can take any value in 
the

x+O

interval (0,w),

(iii) or livm ju(x) - L(pwN) Ixj2/(p-')I " 0

x 0

Here 3(x) denotes the fundamental solution of -A and t = X(p,N) is the (unique)

positive constant C such that ClxI-2/(p-
1
) satisfies (1) - more precisely

Sponsored by the United States Army under Contract No. DAG29-80-C-
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We shall first present a proof of Theorem I which is simpler than the original proof of

V6ron. In particular, it does not make use of Fowler's results [10] for the Zmden

differential equation. Instead, it relies on some simple scaling argument (see the proof

of Lemma 5) which is similar to the one used by Kamin-Peletier [12] for parabolic

equations.

Next, we emphasize that a singular behavior such as (ii) or (iii) can be prescribed

together with a boundary condition, and these determine uniquely the solution. r

More precisely, let 9 be a smooth bounded domain in IP with 0 fi and let

p ) 0 be a smooth function defined on 30. We consider the problem

u C c2,4\{}), u ), 0 on \{01
(2) -Au+up 0 on Al

u -p on an.

Theorem 2 Assume I < p < N/(N-2). Then:

(i) There is a unique solution u0  of (2) which belongs to C2

(ii) Given any constant c c (0, +-) there is a unique solution uC  of (2) which

satisfies

lim u(x)/E(x) - c
x+O

(iii) There is a unique solution u. of (2) which satisfies

lim IxI2/(p1 l)u(x) - L(p,N)
X+O

In addition, lim uc = u0 and lim =
c+ O c+c.

Singular solutions of (1) occur in the Thomas-Fermi theory with N - 3 and p = 3/2

(see e.g. [13] for a detailed exposition). Other results dealing with singular solutions

-2-
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of nonlinear elliptic equations have been obtained by a number of auithors: J. Serrin

[201, [21], V16ron and Vazquez (See the exposition in (23]), P. L. Lions [14], W. M. Ni-

J. Serrin (16]. Semilinear parabolic equations vith isolated singularities have been

considered by Brezis -Friedman (5], Brezis -Peletier -Terman [8], Kamin - Peletier

(12], Oswald (18].
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2. Some preliminary facts

We recall some known results dealing with functions u satisfying (1).

Set a - 2/(p-1) (for I < p < -).

IAma I Assume u C2(BR ) satisfies (M).

Then

u(0) 4 C(p.N)/Ra

where C(pN) is defined by C(p,N) - Max f2czM, 4a(a+l)l 1/(rp - )

The proof of Lmam 1 uses a comparision function U of the same type as in Osserman

(171 (or Zoewner - Uirenberg [IS]), namely set

U(x) - C(p,n) R on

(R2 - 1x 2 %

A direct computation shows that

-AU +U p ; 0 on 3B

By the maximum principle we see that

u C U on BR

and in particular u(O) C U(O).

Lawa 2 Assume u satisfies (1) with 1 < p < 3/(N-2). Then, for

0 < xI( < /2, we have

Ixl* U~PON) R

where B - 2a + 2 - N > a.

Lamaa 2 is established in Brezis - Lieb 161 (proposition A.4) for the special case

where N - 3 and p - 3/2. The proof in the general case is just the same.

Lea 3 Assume I p < N/(N-2) and let c > 0 be a constant. Then, there is a unique

function u satisfying

-4-
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u .) 0 o n , R \ { 0 } ,(3) 

i .

()-Au 
+ up - c8 on ""

We set u WC

ZIaima 3, as vel as Loema 4 below, are due to Denilan - Brozis (unpublished); the

ingredients for the proofs may be found in (2], (31, [41 (and Pslo [1] and 111]).

Finally, we assume that Q is a smooth bounded domain in I with 0 e 0 and that

9 ) 0 in a smooth function defined as .

Lamm 4 Assume 1 < p < N/(-2) and let c > 0 be a constant.

Then, there is a unique function u satisfying

ua C LPMn r) C 2 ( !\{))

u i 0 an \10}
*(4) 

"' '-Au + uP - c6 on n

hi j
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3. A Scaling Argument

An important step in the proof of Theorem 1 is the following

Lemma 5 Assume I < p < N/(N-2). Then we have

lim W cx) - 1x I -Wx)

Proof It is clear (by comparison) that Wc(x) is a nondecreasing function of c.

Moreover we have

WCX) 4 tx-

(by letting R + - in lImma 2). Therefore lim WCx) - %(x) exists pointwise (for

x 0 0) and W.(x) 4 Lx1'
, 

The uniqueness of the solution of (3) implies that Wc(x)

is radial and so is W.(x). Next, we observe that the function

u(x) -kOWc(kx) (k > 0)

satisfies

-Au(x) + uP(x) = koPc8(kx) - kMP'Nc6(x)

It follows, again by uniqueness, that

k 0W (kx) - W Cx)

As c+- we see that

kaW (kx) = W.(x)

Choosing k - 1/Ixi we obtain

w W( ) - W . Ixl - Cl l"

where C > 0 is some constant.

Finally we note that since

-AW + W -W 0 in '(R"\1oI)
c c

and

Wa c  . in (a\o,

-6-
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it follows that ]
-AW + vp =0 in t7(N\O).

This determines the value of the constant C to be C = L.

There is a similar result in balls: Set u = Vc  to be the unique solution of

problem (4) with a - BR

Lemma 6 Assume 1 < p < N/(N-2). Then we have V(x) lin Vcx) exists pointwise on

BR 101 and moreover

W (x) - LR - V (x) 4 W.(x) on BR

Proof It is again clear (by comparison) that Vc(x) is a nondecreasing function of c.

Also we have

(5) 0 4 V0 (x) 4 (x: •

It follows from (4) and (5) that

-A(W - V ) 4 0 on Bcc R

and consequently Sup (Wc - V C ) ( SUP (WC -V ) SupRW. -R

BR aBR R

The conclusion follows by letting c + *.

I.. .-

-7-
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4. Proof of Iheorem 1

Throughout this section we msppose 1 ( p < /(N-2). Assume u satisfies (1) and

set

c = ii. sup u(x)/3(x)
x+O

We distinguish three cases:

Case (] c 0

Case (ii) 0 < c <

Case (iii) c =

Cases i) and (ii).

Here, the main ingredient is the following:

LUma 7 In cases [i) and (ii) the function u belongs to L (BR ) and satisfies
toe R

-Au + u-c 8 in '(D R

for some constant c 0 .

Proof It is clear that u P ( R) since eL (B) and c <.

We now use the same argument as in [7): set

T - -Au + up c D'(sI ) .

Since the support of T is contained in {0), it follows from a classical result about

distributions (see [191) that

(6) T = cap(8)"

We claim that c. - 0 when ji- a 1. Indeed let C cD(B R) be any fixed function such

%that (-,),*,DP€(O) - for every a with , 4 m. multiplying (6) through by

c(x) C(x/e) we obtain

- fuac + fupc o I C2 C-I

VV



An easy computation - using the estimate u 4 CE - shows that

* Ifu AgI 4 C when N ; 3

11,u Ar.1 < citog el + C when N -=2.

Since fuPc + 0 as C + 0, ws conclude that c - 0 for jai 1. Therefore we obtain

-Au + up = c 6 in V'(B R )

We conclude the proof of Theorem I in cases i) and (ii) with the help of the

following:

Lemma 8 Assume u c C 2(BR\to}) n LP (B ) satisfies

u 0 0 on BR,

/
-"-Au + u c 06 in V'(B)

for some constant co.

We have

Mi) if co = 0, then u is smooth on BR

(ii) if co  $ 0, then lim u(x)/E(x) = c 0 .
x+O

Proof

i) Assume co = 0. Since u is subharmonic it follows that u c Lo(B ) and thus

Au c L (B ). We deduce that u e C (8 ) and then u c C 2(B ) In fact u c C7(B
Ltoc R R R R

since, by the strong maximum principle, we have either u 0 or u > 0 or BR .

(ii) Assume co $ 0. By the maximum principle we have

u c C 0 C on BR/2

and therefore

-Au 1 c0 6 - (c0E + Op

) c06 -C(Ep + 1) on B
0 W,2

L " '. ,-9-
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An elementary computation leads to

u(x) ; C 0 E - o(E) as x + 0

and we conclude that lim u(x)/E(x) - C 0 .
X+O

Remark 1 Assume c 0  0. The argument above provides in fact an estimate for Iu - Coi

as xc + 0. More precisely we have

a) If N = 2 and 1 < p < - or N - 3 and I < p < 2, then
u- c 0 El 4 C on BR/2

b) If N =3 and p 2, then

lu(x) - c0E(x)l 4 C(jioglxlj + 1) onB2

c) If N =3 and 2 < p < 3 or N ; 4 and I < p < N/(N-2) then

u(x) - c0EWx l 4 C1x,
2" (N 2 )p  on aR/2

and consequently

(- col 4 C lxiv on B3/2

with v - N - (N-2)p > 0.

Proof of Theorem I in the case (iii)

We first recall a result of V~ron (22] (LMesma 1.5):

Lemma 9 Assume u satisfies (1). Then, there is a constant C (depending only as p

and N) such that

Sup u(x) 4 C Inf u(x) for 0 < r < R/2.
Ix1=r jxj-r

The conclusion of Lemma 9 is a simple consequence of Harnack's inequality and the estimate

of Lemma 1 - see [22] for the details.

We may now complete the proof of Theorem 1 with the help of the following:

Lemma 10 Assume u satisfies (1) and Um sup u(x)/E(x) - . Then
x+O

Ju(x) - x -C Cx Y  on BR2

for some constants C - C(prNR) and y - f(p,M) > 0.

-10-
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Proof By Lenma 2 we already have the estimate

u(X) 4 ilxjl" + cxlj on BR/2

with

' = -" + 2 N > 0.

We now establish an estimate from below. Let x+ * 0 be such that l"m u(xn)/Z(x n ) - -.

Set rn . lxnl, so that we obtain from Leamma 9

(7) Inf u(X)/Z(x)++"
lxir Wn

We recall that Vc  is the unique solution of (4) when 0 - B , so that

V 4 cE on Bc R

Given any constant c > 0, we see (by (7)) that

u(x) ) cE(x) for jxi - rn  and n large enough

Therefore we obtain

U(X) ) Vc (x) for lxj - rn and n large enough

Applying the maximum principle in the domain Ix R, r < lxi < RI} we find that

u(x) o Vc (x) for rn < Ixt < R and n large enough

AS n + we conclude that

u(x) P V,(x) on BR\{01

and as c + - we see that

u(x) > V.(x) on ,R\{}•

In Lemma 6 we had the estimate

v(x) ;, 1lx -'

However it is not good enough to deduce conclusion (iii) of Theorem 1. We need a better

estimate from below for V(x)y we claim that

(8) Vjx) =l~l"t -XC tR on BR

where B is defined in Lemma 2.

-11-
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Clearly, it muffices to establish (8) for R = 1. The function V, is radial and so

we write V.(r). We define the function v or (0,1) by the relation

v(r) - ' v(r)

so that 0 4 v 4 1 on (0,1), v(1) - 0 and v(0) - 1. Using the relation -AV + V! 0

it is easy to deduce (as in the proof of Proposition A.4 (61) that

-2 t 2v(t) + LP 1'v(t)(vP'(t) - 1) - 0 -for t e (0,1).

Consequently v is concave and thus we have

v(t) . I -t Wt C (0,),

that is (8).

Remark 2 Wron [221 obtains in case (iii) an estimate of the form

lu(x) - Ixl 'I < Cxi 6 with an exponent 5 which is better than Y - B - a.

.,v

.4.
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5. Proof of Theorem 2.

Came Mi is classical.

Case (ii) The existence of a solution follows from Lemma 4 and S.

Suppose now u satisfies (2) and him u(x)/Z(x) - c. We deduce from Lemma 7 and a
x+0

that -Au + up - c6 I uniqueness follows from Lsa 4.

Case (iii) Ws denote by uc the unique solution of (4) given by lamma 4. We claim that

U. h im u c has all the required properties.

Indeed %c(x) is a nondecreasing function of c. Fix R > 0 such that

2R < dist(O,3fl). By Lonna I we have

u C) W C(p,N)RKQ for lxi - R.

The maximum principle applied in the region

KR Ix e2 01 Q >x )

shows that, in1

u W ) Max {Sup -P. C(p.M)R 1

Therefore u,,(x) - ham u c x) exists and u. satisfies (2). By comparison on OR We
c+

have

V 4 u on
c c KR

and as c* we obtain V 4U.on R

it follows that lmiu.(x) - Ljxl 'I - 0 (by lemma 6 and Theorem 1).

x+0

We turn now the question of uniqueness. Suppose U, and u2 satisfy (2) and

limlxl~u LxW - I for i - 1, 2. Lonn 10 implies that
x+0

1u1(x) - u2fx)l <clxl~f on OR

On the other hand we have

-A~u * up -up 0 onn\1
-u1 - 2) 1 2

-13-
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Applying the maximum principle in OR We

M4axu I u 21 ax'u 1 - U21 4 CRY

and then we let R + 0 to conclude that ul -u 2.

-14-

61,a



References

[l] P. Baras - M. Pierre, Singularit6s 6liminables pour des dquations semi-linlaires,

Ann. Inst. Fourier 34 (1984) p. 185-206.

[2] Ph. Benilan - H. Brezis - M. Crandall, & semilinear elliptic equation in LI(am),

Ann. Sc. Norm. Sup. Pisa 2 (1975) p. 523-555.

[31 H. Brezis, Some variational problems of the Thomas-Fermi type, in Variational

inequalities, Cottle, Gianessi, Lions ed. Wiley (1980) p. 53-73.

(4] H. Brezis, Semilinear equations in R" without condition at infinity, Applied Math.

and Opt. 12 (1984) p. 271-282.

[5] H. Brezis - A. Friedman, Nonlinear parabolic equations involving measures as initial
conditions, J. Math Pures et Appl. 62 (1983) p. 73-97.

[6] H. rezis - E. Lieb, long range potentials in homas-rarmi theory, Com. Math. Vhys.

65S (1979) p. 231-246.

[7] H. Brezis - P. L. Lions, A note on isolated singularities for linear elliptic

equations, in Mathematical Analysis and Applications, Part A, a volume dedicated to

L. Schwartz, L. Nachbin ed. Aced. Press (1961) p. 263-266.

[8] H. Brezis - L. Peletier - D. Terman, A very singular solution of the heat equation

with absorption, Archive Rat. Mech. Anal. (to appear).

[9] H. Brezis - L. Vron, Removable singularities of some nonlinear elliptic equations,

Archive Rat. Mach. Anal. 75 (1980) p. 1-6.

[10] R. H. Fowler, Further studies on Anden's and similar differential equations,

Quarterly J. Math 2 (1931) p. 259-288.

[11] Th. Gallouet-!I)V4 V"4-el, Resolution of a semilinear equation in L1 , Proc. My.

Soc. Edinburgh, 96A (1984) p. 275-289.

[12] S. Kamin - L. Peletier, Singular solutions of the heat equation with absorption (to

appear).

[13] Z. Lieb, Thomas-Fermi and related theories of atoms and molecules, Reviews of modern

Phys. 53 (1981) p. 603-641.

Isam



[14] P. L. Lions, Isolated singularities in semilinear problems, J. Diff. Sq. 38 (1960)

p. 441-450.

[15] C. Ioewmer - L. Nirenberg, Partial differential equations invariant under conformal

or projective transformations in Contributions to Analysis, Acad. Press (1974)

p. 245-272.

[16] W. M. Ni - J. Serrin, Von-existence theorems for singular solutions of quasilinear

partial differential equations (to appear).

[17] R. Osserman, an the inequality Au ) flu), Pacific J. Math. 7 11957) p. 1641-1647.

[181 L. Oswald, Isolated singularities for a nonlinear heat equation, C. R. Aced. Sc. and

detailed paper to appear.

[191 L. Schwartz, Thiorie des distributions, Hermann (1966).

[20] J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math. 111

(1964), p. 247-302.

[21] J. Serrin, Isolated singularities of solutions of quasilinear equations, Acta Math.

113 (1965), p. 219-240.

[22] L. Vron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. 5

(1981), p. 225-242.

[231 L. Wron, Weak and strong singularities of nonlinear elliptic equations, AIS Bymp.

Pure Math. (to appear).

-16- [

A

%.



SECURITY CLASSIFICATION OF THIS PAGE (When Do Elte __0

REPORT DOCUMENTATION PAGE BEFORE COMPLETI G FORM
1. REPORT NUMBER 12._GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

" 4. TITLE (and Subitle) S. TYPE OF REPORT & PERIOD COVERED

SINGULAR SOLUTIONS FOR SOME Summary Report - no specific

SEMILINEAR ELLIPTIC EQUATIONS reporting period
S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(s)

Halm Brezis and Luc Oswald DAAG29-80-C-0041

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

Mathematics Research Center, University of AREA k WORK UNIT NUMBERS

610 Walnut Street Wisconsin (Appli Nalysis)

Madison, Wisconsin 53706 (Applied Analysis)

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office August 1985
P.O. Box 12U211 1. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 16
14. MONITORING &GENCY NAME & ADDRES (II different from Cntroliiil Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS.. DECLASSI FICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of tlc* Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of th ebetrect entered In Block 20. It different how Report)

IS. SUPPLEMENTARY NOTES

III. KEY WORDS (Continue on reverse aide It necessar end Idmntl*' by black nuniber)

Isolated singularities

20. ABSTRACT (Continue on reverse alde If necesar, And identily by block number)
We give a new proof of Veron's result concerning the classification of

isolated singularities for the equation -Au + up 0. We also establish that
the singular behavior at a point can be prescribed and determines uniquely the
solution (under fixed boundary conditions).

DDOJN 1473 EDITION OF I NOV 65 IS ODSOLTU
DO, AN UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whon Date fftered)

-L 6 ....



FILMED

12-859

,:j:DTIC


